GC B/

content.log
@ R3{L: 49 min 41 sec 828 ms

& BITER &

Our analysis tells that your application is suffering from memory leak. It can cause OutOfMemoryError, JVM to freeze, poor response time and high

CPU consumption.

Read our recommendations to ‘

< EEEMZE 0 i

Our analysis tells that your application is spending too much time on GC. 22.58% of time is spent on GC. Too much GC activity degrades response
time + consumes CPU. It's ideal to keep GC time under 10.0%.

Read our recommendations to ‘

© Y
(CAUTION: Please do thorough testing before implementing below recommendations.)

v 10 min 44 sec 659 ms of GC pause time is triggered by 'G1 Evacuation Pause' event. This GC is triggered when copying live objects from one
set of regions to another set of regions. When Young generation regions are only copied then Young GC is triggered. When both Young + Tenured
regions are copied, Mixed GC is triggered..

https://gceasy.ycrash.cn/gc-recommendations/memory-leak-solution.jsp
https://gceasy.ycrash.cn/gc-recommendations/through-solution.jsp

Solution:

1. Evacuation failure might happen because of over tuning. So eliminate all the memory related properties and keep only min and max heap and a
realistic pause time goal (i.e. Use only -Xms, -Xmx and a pause time goal -XX:MaxGCPauseMillis). Remove any additional heap sizing such as -
Xmn, -XX:NewsSize, -XX:MaxNewSize, -XX:SurvivorRatio, etc.

2. If the problem still persists then increase JVM heap size (i.e. -Xmx).

3. If you can't increase the heap size and if you notice that the marking cycle is not starting early enough to reclaim the old generation then reduce
-XX:InitiatingHeapOccupancyPercent. The default value is 45%. Reducing the value will start the marking cycle earlier. On the other hand, if the
marking cycle is starting early and not reclaiming, increase the -XX:InitiatingHeapOccupancyPercent threshold above the default value.

4. You can also increase the value of the '-XX:ConcGCThreads' argument to increase the number of parallel marking threads. Increasing the
concurrent marking threads will make garbage collection run fast.

5. Increase the value of the '-XX:G1ReservePercent' argument. Default value is 10%. It means the G1 garbage collector will try to keep 10% of
memory free always. When you try to increase this value, GC will be triggered earlier, preventing the Evacuation pauses. Note: G1 GC caps this
value at 50%.

6 sec 30 ms of GC pause time is triggered by 'G1 Humongous Allocation' event. Humongous allocations are allocations that are larger than 50%
of the region size in G1. Frequent humongous allocations can cause couple of performance issues:

1. If the regions contain humongous objects, space between the last humongous object in the region and the end of the region will be unused. If
there are multiple such humongous objects, this unused space can cause the heap to become fragmented.

2. Until Java 1.8u40 reclamation of humongous regions were only done during full GC events. Where as in the newer JVMs, clearing humongous
objects are done in cleanup phase.

Solution:

You can increase the G1 region size so that allocations would not exceed 50% limit. By default region size is calculated during startup based on
the heap size. It can be overriden by specifying '-XX:G1HeapRegionSize' property. Region size must be between 1 and 32 megabytes and has to
be a power of two. Note: Increasing region size is sensitive change as it will reduce the number of regions. So before increasing new region size,
do thorough testing.

80.0 ms of GC pause time is triggered by 'Metadata GC Threshold' event. This type of GC event is triggered under two circumstances:
1. Configured metaspace size is too small than the actual requirement
2. There is a classloader leak (very unlikely, but possible).

Solution:

You may consider setting '-XX:MaxMetaspaceSize' to a higher value. If this property is not present already please configure it. Setting these
arguments to a higher value will reduce 'Metadata GC Threshold' frequency. If you still continue to see 'Metadata GC Threshold' event reported,
then you need to capture heap dump from your application and analyze it. You can learn how to do heap dump analysis from this article.
(https://blog.heaphero.io/2018/03/27/how-to-diagnose-memory-leaks/)

v It looks like you are using G1 GC algorithm. If you are running on Java 8 update 20 and above, you may consider passing -

XX:+UseStringDeduplication to your application. It will remove duplicate strings in your application and has potential to improve overall

application's performance. You can learn more about this property in this article. (./gc-recommendations/stringdeduplication-solution.jsp?)

<

This application is using the G1 GC algorithm. If you are looking to tune G1 GC performance even further, here are the important G1 GC algorithm

related JVM arguments (./gc-recommendations/important-g1-gc-arguments.jsp?)

S JVM AKX

(To learn about JVM Memory,_click here (https://www.youtube.com/watch?v=uJLOICuOR4k))

K

Young 1,
Old £t
Humongous

Metaspace

Young + Old +
Metaspace

ot 0
448 mb
220 mb
n/a

1.16 gb

1.81 gb

I#E 0
400 mb
659 mb
300 mb

175.69
mb

841.69
mb

EETRER

JVM A7 K/ - 253 vs WE{H (mb)

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

2,000

https://blog.heaphero.io/2018/03/27/how-to-diagnose-memory-leaks/
https://gceasy.ycrash.cn/gc-recommendations/stringdeduplication-solution.jsp?
https://gceasy.ycrash.cn/gc-recommendations/important-g1-gc-arguments.jsp?
https://www.youtube.com/watch?v=uJLOlCuOR4k

Q XKigEeetEtR (KPI)

(EEIREED. NETHRESZSHEX KPIEE, Bttt (https://blog.gceasy.io/2016/10/01/garbage-collection-kpi/))

1 &0 :77.421% GC T%‘ffi H‘f |Eﬂ ﬁ lﬁ
2 3B 700 - 800ms §o0.82%

F491E1 GC BiE @ 174 ms 600 - 700ms 22.97%

RX{EiR GC iIE € 760 ms

500 - 600ms J0.15%

400 - 500ms 40.08%

GRS TS ©: 300 - 400ms -0.03%

Duration (ms) No. Percents 100 - 200ms
0 me Y :] ngs 0 - 100ms
0-100 2923 75.35Y%
100 - 200 23 0.59%
300 - 400 1 0.03%
400 - 500 3 0.08%
500 - 600 6 0.15%

600 - 700 891 22.97%

https://blog.gceasy.io/2016/10/01/garbage-collection-kpi/

700 - 800 32 0.82%

-'lII §E§ (eI EIZEH

(https://www.youtube.com/watch?v=JhZFj6gJQyk)

T e) iz Become Performance Expert! Training from GCeasy
Architect!

(https://ycrash.io/java-performance-training)

HEWAFRE RS oL (GCm)d

700

1

-

2

HERFFEAR/N (mb)

H |

100

12:05:00 pm 12:10:00 pm 12:15:00 pm 12:20:00 pm 12:25:00 pm

fiE UTC+0800

12:30:00 pm 12:35:00 pm 12:40:00 pm 12:45:00 pm

https://www.youtube.com/watch?v=JhZFj6gJQyk
https://ycrash.io/java-performance-training

HENAFAEITS DL (GC D

700

3

3

2

HERFFEAR/N (mb)

3

100

12:05:00 pm 12:10:00 pm 12:15:00 pm 12:20:00 pm 12:25:00 pm

fiE UTC+0800

12:30:00 pm 12:35:00 pm 12:40:00 pm 12:45:00 pm

GC }54ERd1a

10,000

HEI 6] (ms)

12:05:00 pm 12:10:00 pm 12:15:00 pm 12:20:00 pm 12:25:00 pm 12:30:00 pm 12:35:00 pm 12:40:00 pm 12:45:00 pm
Adi8] UTC+0800

B Young GC A Full GC

800

700

500

HEI 6] (ms)

300

200

100

{E47 G $55EaT18 BE

LA A LN

12:05:00 pm

12:10:00 pm

12:15:00 pm

12:20:00 pm 12:25:00 pm

AfjE] UTC+0800

12:30:00 pm

B Young GC A Full GC

12:35:00 pm

12:40:00 pm

12:45:00 pm

150

100

50

12:05:00 pm

|
u I—_—I—'—F
e L
| J]
- u
i -
] |
] | |]
[]
n [3
F oy =
[
|
[
m gt
E "a =
A
[|
| HE | [
- 1 1 1 - 1 -
12:10:00 pm 12:15:00 pm 12:20:00 pm 12:25:00 pm 12:30:00 pm 12:35:00 pm 12:40:00 pm 12:45:00 pm

AfjE] UTC+0800

B Young GC A Full GC

450

350

300

250

200

150

100

50 i
Wil A

0 = N | T | Iy
12:05:00 pm

| YN ' L 'll

12:10:00 pm 12:15:00 pm 12:20:00 pm 12:25:00 pm 12:30:00 pm 12:35:00 pm 12:40:00 pm 12:45:00 pm

AfiEl UTC+0800

——1—

— allocated space = before GC = after GC

old 1%

700
500
500
400
300

|

100

12-05:00 pm 12-10:00 pm 12-15:00 pm 12-20:00 pm 12-25:00 pm 2-30:00 pm 2:35:00 pm 12-40:00 pm 12-45:00 pm

AfiEl UTC+0800

¥ allocated space = before GC = after GC

Metaspace
1,200

»

12-05:00 pm 12-10:00 pm 12-15:00 pm 12-20:00 pm 12-25:00 prm 12-30:00 pm 12-35:00 pm 12-40:00 pm 12-45:00 pm

ffa] UTC+0800

— allocated space = before GC =— after GC

Allocation & Promotion

o' G1 [T EREFITEL

12-15:00 pm 12-20:00 pm 12-25:00 pm 12-30:00 pm 12-35:00 pm 12-40:00 pm 12-:45:00 pm

AfiEl UTC+0800

— ArBet g oy = Promoted (Young -> 01d) objects size

T

Cleanup 49-4

Root Region Scanning 4 4-21

20 1] (ms) e RICTNE D

'\ ¢

10.4
Remark 17.72
3-23
0.15
Concurrent Marking

Young GC

Full GC B17.81

g8 WFul 60 @ Young G0 @ Concwrent Marking @ Remark
Foot Reglon Secanning @ Cleanup

-
=
]
=]
fd
]
=]
(5]
=]
=
i
=]
=]
Ln
=]
=]

Full GC O Young GC O Concurrent Remark @ Root Region Cleanup O
Marking Scanning
Total Time @ 10 min 17 sec 806 9 min 13 sec 953 8 min 13 sec 856 ms 10 sec 396 3 sec 235 ms 149 ms
ms ms ms
Avg Time © 662 ms 182 ms 612 ms 27.7 ms 4.01 ms 0.397 ms
Std Dev Time 25.2 ms 355 ms 448 ms 5.14 ms 9.51 ms 0.0685 ms
Min Time @ 400 ms 0 0.187 ms 2.71 ms 0.00400 ms 0.0950 ms
Max Time © 760 ms 9 sec 228 ms 9 sec 138 ms 54.2 ms 163 ms 0.640 ms
Interval Time 764 ms 978 ms 3 sec 591 ms 5 sec 933 ms 3 sec 591 ms 5 sec 933
(2] ms
Count @ 933 3048 807 375 807 375

® G1 GC B[

fsr, JF AR T CFF) I frt, JFACEEIR a9

2
ol
-

0.1 1

b7

28

had

. . Pause Time Concurrent Time
@ Fanze GC Time @ Conowrrent G0 Time

{SIRETIE) @ F&HTIE @

Total Time 11 min 13 sec 279 ms Total Time 8 min 17 sec 132 ms
Avg Time 174 ms Avg Time 308 ms

Std Dev Time 276 ms Std Dev Time 439 ms

Min Time 0.0950 ms Min Time 0.00400 ms

Max Time 760 ms Max Time 9sec 138 ms

Q i\jgﬁi:& 9 E CPU StatS 9 (To learn more about CPU stats, &5

I (https://blog.gceasy.io/2022/08/05/garbage-collection-cpu-
Total created bytes @ 188.61 gb statistics/))
CPUTime: ® 36 min 42 sec 670 ms

https://blog.gceasy.io/2022/08/05/garbage-collection-cpu-statistics/

Total promoted bytes 11.18 gb User Time: ® 36 min 39 sec 60 ms

(2]
Sys Time: @ 3sec 610 ms

Avg creation rate @ 64.77
mb/sec

Avg promotionrate @ 3.84 mb/sec

I &E&E FullGC o

None.

11 <A 8IS0 o

None.

iy e 2
O B2 =§54EAYE o
T THRESEXRLERGENENER, EAELAb (/gc-recommendations/safe-point-solution.jsp))

Not Reported in the log.

https://gceasy.ycrash.cn/gc-recommendations/safe-point-solution.jsp

X $ECBHZEEIT ©

(click here, BRI (./gc-recommendations/allocation-stall-solution.jsp))

Not Reported in the log.

() FIIRESHET 0

Not Reported in the log.

© GC [F# o

BPEEH5|RT GC LARXESEMAERE T Z/aE?)

RE it8 EiE
G1 Evacuation Pause @ 2781 232 ms
GCLocker Initiated GC @ 44 273 ms

G1 Humongous Allocation @ 346 17.4 ms

Metadata GC Threshold @ 4 20.0 ms

EAHRSE
760 ms
730 ms
130 ms

30.0 ms

SRIE

10 min 44 sec 659 ms
12 sec 10 ms

6 sec 30 ms

80.0 ms

GC J& N CEmfIa]D

https://gceasy.ycrash.cn/gc-recommendations/allocation-stall-solution.jsp

23 Tenuring {52 o

REBEPHRE.

RAJVM S o

(To learn about JVM Arguments,_click here (https://blog.gceasy.io/2020/03/18/7-jvm-arguments-of-highly-effective-applications/))

REBEPHRE.

https://blog.gceasy.io/2020/03/18/7-jvm-arguments-of-highly-effective-applications/

