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Our analysis tells that your application is suffering from memory leak. It can cause OutOfMemoryError, JVM to freeze, poor response time and high

CPU consumption.

Read our recommendations to ‘
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Our analysis tells that your application is spending too much time on GC. 22.58% of time is spent on GC. Too much GC activity degrades response
time + consumes CPU. It's ideal to keep GC time under 10.0%.

Read our recommendations to ‘

© Y
(CAUTION: Please do thorough testing before implementing below recommendations.)

v 10 min 44 sec 659 ms of GC pause time is triggered by 'G1 Evacuation Pause' event. This GC is triggered when copying live objects from one
set of regions to another set of regions. When Young generation regions are only copied then Young GC is triggered. When both Young + Tenured
regions are copied, Mixed GC is triggered..


https://gceasy.ycrash.cn/gc-recommendations/memory-leak-solution.jsp
https://gceasy.ycrash.cn/gc-recommendations/through-solution.jsp

Solution:

1. Evacuation failure might happen because of over tuning. So eliminate all the memory related properties and keep only min and max heap and a
realistic pause time goal (i.e. Use only -Xms, -Xmx and a pause time goal -XX:MaxGCPauseMillis). Remove any additional heap sizing such as -
Xmn, -XX:NewsSize, -XX:MaxNewSize, -XX:SurvivorRatio, etc.

2. If the problem still persists then increase JVM heap size (i.e. -Xmx).

3. If you can't increase the heap size and if you notice that the marking cycle is not starting early enough to reclaim the old generation then reduce
-XX:InitiatingHeapOccupancyPercent. The default value is 45%. Reducing the value will start the marking cycle earlier. On the other hand, if the
marking cycle is starting early and not reclaiming, increase the -XX:InitiatingHeapOccupancyPercent threshold above the default value.

4. You can also increase the value of the '-XX:ConcGCThreads' argument to increase the number of parallel marking threads. Increasing the
concurrent marking threads will make garbage collection run fast.

5. Increase the value of the '-XX:G1ReservePercent' argument. Default value is 10%. It means the G1 garbage collector will try to keep 10% of
memory free always. When you try to increase this value, GC will be triggered earlier, preventing the Evacuation pauses. Note: G1 GC caps this
value at 50%.

6 sec 30 ms of GC pause time is triggered by 'G1 Humongous Allocation' event. Humongous allocations are allocations that are larger than 50%
of the region size in G1. Frequent humongous allocations can cause couple of performance issues:

1. If the regions contain humongous objects, space between the last humongous object in the region and the end of the region will be unused. If
there are multiple such humongous objects, this unused space can cause the heap to become fragmented.

2. Until Java 1.8u40 reclamation of humongous regions were only done during full GC events. Where as in the newer JVMs, clearing humongous
objects are done in cleanup phase.

Solution:

You can increase the G1 region size so that allocations would not exceed 50% limit. By default region size is calculated during startup based on
the heap size. It can be overriden by specifying '-XX:G1HeapRegionSize' property. Region size must be between 1 and 32 megabytes and has to
be a power of two. Note: Increasing region size is sensitive change as it will reduce the number of regions. So before increasing new region size,
do thorough testing.

80.0 ms of GC pause time is triggered by 'Metadata GC Threshold' event. This type of GC event is triggered under two circumstances:
1. Configured metaspace size is too small than the actual requirement
2. There is a classloader leak (very unlikely, but possible).



Solution:

You may consider setting '-XX:MaxMetaspaceSize' to a higher value. If this property is not present already please configure it. Setting these
arguments to a higher value will reduce 'Metadata GC Threshold' frequency. If you still continue to see 'Metadata GC Threshold' event reported,
then you need to capture heap dump from your application and analyze it. You can learn how to do heap dump analysis from this article.
(https://blog.heaphero.io/2018/03/27/how-to-diagnose-memory-leaks/)

v It looks like you are using G1 GC algorithm. If you are running on Java 8 update 20 and above, you may consider passing -

XX:+UseStringDeduplication to your application. It will remove duplicate strings in your application and has potential to improve overall

application's performance. You can learn more about this property in this article. (./gc-recommendations/stringdeduplication-solution.jsp?)

<

This application is using the G1 GC algorithm. If you are looking to tune G1 GC performance even further, here are the important G1 GC algorithm

related JVM arguments (./gc-recommendations/important-g1-gc-arguments.jsp?)
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(To learn about JVM Memory,_click here (https://www.youtube.com/watch?v=uJLOICuOR4k))
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(https://www.youtube.com/watch?v=JhZFj6gJQyk)

T e) iz Become Performance Expert! Training from GCeasy
Architect!

(https://ycrash.io/java-performance-training)
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Total Time 11 min 13 sec 279 ms Total Time 8 min 17 sec 132 ms
Avg Time 174 ms Avg Time 308 ms

Std Dev Time 276 ms Std Dev Time 439 ms

Min Time 0.0950 ms Min Time 0.00400 ms

Max Time 760 ms Max Time 9sec 138 ms

Q i\jgﬁi:& 9 E CPU StatS 9 (To learn more about CPU stats, &5

I (https://blog.gceasy.io/2022/08/05/garbage-collection-cpu-
Total created bytes @  188.61 gb statistics/))
CPUTime: ® 36 min 42 sec 670 ms


https://blog.gceasy.io/2022/08/05/garbage-collection-cpu-statistics/

Total promoted bytes 11.18 gb User Time: ® 36 min 39 sec 60 ms
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Sys Time: @ 3sec 610 ms
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Avg promotionrate @  3.84 mb/sec
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None.
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T THRESEXRLERGENENER, EAELAb (/gc-recommendations/safe-point-solution.jsp))

Not Reported in the log.


https://gceasy.ycrash.cn/gc-recommendations/safe-point-solution.jsp
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( click here, BRI (./gc-recommendations/allocation-stall-solution.jsp))

Not Reported in the log.
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Not Reported in the log.
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https://gceasy.ycrash.cn/gc-recommendations/allocation-stall-solution.jsp
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(To learn about JVM Arguments,_click here (https://blog.gceasy.io/2020/03/18/7-jvm-arguments-of-highly-effective-applications/))
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https://blog.gceasy.io/2020/03/18/7-jvm-arguments-of-highly-effective-applications/

